

The MITRE Corporation

jCarafe – v0.9.8.6_v1

Ben Wellner

1 Overview .. 3

1.1 What this Guide Contains ... 4

1.2 System Requirements and Notes on Performance ... 4

1.3 Memory Considerations .. 5

2 Input/Output Formats ... 5

2.1 InLine ... 5

2.1.1 Pre-processing .. 6

2.1.2 Labeling Individual Tokens ... 6

2.1.3 Robust Decoding ... 7

2.2 MAT-JSON .. 7

2.2.1 Tokenization and Sequence Detection and Region Processing .. 8

2.3 Basic Input Format ... 9

3 Getting Started ... 10

3.1 A Simple Example .. 10

3.1.1 Training .. 11

3.1.2 Decoding .. 11

3.2 Overview of the Command Line Options ..12

3.3 Detailed Description of Command Line Options ... 16

3.3.1 Lexicon Directory (--lexicon-dir) .. 17

3.3.2 Tagset Specification (--tagset or --tag) ... 17

3.3.3 Begin, inside, outside encoding (--begin) .. 18

3.3.4 Periodic Step-size Adaptation (--psa) .. 18

3.3.5 L1 Regularization (--l1 and --l1-C) .. 19

3.3.6 Pipelining Decoders (--pre-model) .. 20

3.3.7 Semi-Markov CRFs (--semi-crf) .. 22

3.3.8 Multi-threaded Decoding (--nthreads) .. 22

3.3.9 Parallel Training Options (--parallel and --nthreads) .. 23

3.3.10 Word Properties (--word-properties) .. 23

3.3.11 Neural CRF (--neural and --num-gates) ... 23

4 Feature Specifications ... 24

4.1 Built-in Feature Functions ... 25

4.2 Transition vs State Features ... 26

4.3 Neural Features .. 27

4.4 Higher-order Feature Specifications .. 28

4.5 Semi-CRF Feature Specifications ... 29

5 jCarafe API ... 29

6 jCarafe as a Service using XML-RPC ... 30

7 Custom Tokenization Patterns ... 31

7.1 Split Patterns .. 32

7.2 Merge Patterns ... 33

7.3 Pattern Interpreter Details ... 34

7.4 Tokenizer Pattern Language Grammar .. 35

8 Additional Functionality ... 35

8.1 Tokenizer ... 35

8.2 Term Clustering and Leveraging Clusters as Features ... 36

8.3 Maximum Entropy Classification .. 36

8.3.1 Data Formats ... 37

8.4 Log-linear Ranking Model ... 38

 1 Overview

jCarafe provides a statistical machine learning framework for creating systems that can automatically extract
information from natural language free text. A common example includes the task of identifying Named
Entities such as persons, organizations and locations.

 1.1 What this Guide Contains

This document is focused primarily on providing details on how to use jCarafe from the command line to train
phrase extraction models and then how to apply them to "raw" (i.e. un-annotated) text data.

jCarafe performs important steps in the annotate-train-test paradigm for developing text processing (or, more
generally, sequence labeling) systems using a machine learning component. In the course of developing a
system, however, the processes of annotating training data and employing proper metrics and error reporting
for system evaluation are also important for building a high-accuracy system. This document does not
address these two areas in much detail. Evaluation frameworks can be found within MAT (The MITRE
Annotation Toolkit) along with software for creating annotations. Other annotation tools include Callisto,
WordFreak and Knowtator.

It is worth noting that jCarafe's underlying algorithms apply much more broadly than the focus of this Users’
Guide. The focus here is on rapidly and easily developing phrase extraction systems with jCarafe. However,
the underlying algorithms, based on Conditional Random Fields, have been employed for a variety of tasks,
including: part-of-speech tagging, shallow parsing, event extraction, co-reference, syntactic dependency
parsing, word alignment, semantic role labeling, dialog act tagging, summarization and discourse parsing.

 1.2 System Requirements and Notes on Performance

jCarafe should run on any JRE version 1.5.x or greater. jCarafe is quite memory and CPU intensive due to
the nature of the underlying statistical inference and parameter estimation algorithms. Some attention has
been placed on optimizing the system's runtime behavior in terms of both memory and CPU usage, but for
large data sets powerful hardware may be required.

Training usually involves holding the entire training set and all features extracted from it in main memory;
numerous training iterations over the entire data set are then required to learn a model. Memory requirements
and training times can be reduced using disk-caching and stochastic gradient descent learning methods (see
the --psa flag below in Table 1); this is required for training on very large datasets (e.g. greater than 1
million words) and/or for complicated tasks involving many categories/labels.

Decoding times are usually quick, but the time is quadratic in the number of categories (e.g. a doubling in the
number of categories results in a four-fold increase in decoding times) and is also affected roughly linearly in
the number of features. Decoding can also require significant memory since trained models can involve
millions of parameters; the entire model must reside in memory during decoding. Also, for large models, which
sometimes are 100's of megabytes on disk, the startup time for the decoder is significant since the entire
model must be loaded into memory. Accordingly, the jCarafe decoder typically operates as a server or is used
to process a large number of files in batch.

Recent enhancements to jCarafe allow for multi-threading in a variety of contexts.

 1.3 Memory Considerations

For training on large datasets, the maximum heap size of the JVM may need to be increased. This is
achieved by adding an option to the java invocation. The flag has the form –Xmxnumberunit where number is
an integer and unit is typically either m for megabytes or g for gigabytes. So -Xmx1500m would set the
maximum heap size to 1500 megabytes. Note that the default heap sizes vary by platforms and JVM version
and install differences.

 2 Input/Output Formats

The two primary input/output formats are discussed below.

 2.1 InLine

This format assumes input files are plain text. Annotations, at training time, are provided as inline XML/SGML
elements wrapped around annotated phrases, just as with the XML input/output mode. However, the
document need not be well-formed XML. Further, the text processing mode carries out its own tokenization
and sequence boundary identification. At training time, an appropriate example input is provided below:

The CEO, <PERSON>John Smith</PERSON>, left for <LOCATION>Boston</LOCATION>

While the input is generally assumed to be plain text, modulo XML elements denoting phrase annotations, this
processing mode will accept and recognize SGML elements and ignore them for the purposes of determining
tokens and/or sentence boundaries. In practical terms, this means that the less-than character, < , needs to
be escaped since otherwise identifying SGML elements is problematic.

Note that this format will happily accept well-formed XML, but documents are not required to be XML-
compliant.

 2.1.1 Pre-processing

jCarafe uses its own tokenizer to identify words as well as potential sentence boundaries. In some cases,
tokens have already been identified by an earlier processing stage – e.g. a part of speech tagger. In other
cases, the user may want to ensure that jCarafe treats a sequence of characters in a document as a single
token. Such pre-identified tokens can be specified by using <lex> tags in the input data. Below is an
example:

<lex>The</lex> <lex>CEO</lex><lex>,</lex> <PERSON><lex>John</lex>

<lex>Smith</lex></PERSON><lex>,</lex> <lex>left</lex> <lex>for</lex>

<LOCATION><lex>Boston</lex></LOCATION>

 2.1.1.1 Token Attributes as Features

Tokens, specified with lex tags, can have associated with them attribute value pairs that are denoted as
attribute value pairs within the lex tag element. The attribute value pairs can then be used as features by the
trainer and decoder. This provides a hook that allows for arbitrary information about individual tokens to be
provided by an external pre-processing component. In this way, rich task-specific features can be introduced
without needing to modify jCarafe. This is especially preferable when existing scripts or tools are available for
extracting certain types of features and/or the user does not want to write Java or Scala code in order to
extend jCarafe's inventory of feature extraction functions.

 2.1.2 Labeling Individual Tokens

Not only can attributes be provided as input features, but the tagging task can be set up to label individual
tokens (rather than spans or sequences of tokens). A common instance of this sort of tagging task would be
part-of-speech tagging, where each token receives a separate label and there isn't any notion of a "phrase".

<lex pos="DT">The</lex> <lex pos="NN">man</lex>

<lex pos="VBD">jumped</lex><lex pos=".">.</lex>

The above example shows how the part-of-speech tagging task could be represented in jCarafe. Attribute
names (and values) that denote the labels of interest must be specified through the proper tagset.

 2.1.3 Robust Decoding

In some cases, prohibiting the input data from containing the ‘<’ character is inconvenient at decoding time. It
is possible to run the decoder using a different lexer that does not identify xml/sgml elements. Identified
entities will still be denoted using xml/sgml elements in the output, however. This form of decoding is enabled
by adding the --no-tags option when invoking the decoder.

 2.2 MAT-JSON

The MAT-JSON input format uses the Java-Script Object Notation (JSON) format along with a simple
schema to represent a text document together with associated metadata, including extracted or human-
annotated phrase annotations. In contrast to Inline mode, annotations are represented using stand-off
annotations. Each annotation specifies a beginning and ending character position within the text along with the
type of the annotation. The full schema is discussed in more detail in the documentation for MAT. An instance
of the MAT-JSON format for the simple, ongoing example is found below:

{"signal": "The CEO, John Smith, left for Boston.", "asets":

[{"type": "lex", "attrs":[], "annots": [[0,3], [4,7], [7,8],

[9,13], [14,19], [19,20], [21,25], [26,29], [30,36], [36,37]]},

{"type":"PERSON", "attrs":[], "annots": [[9,19]]},

{"type":"LOCATION", "attrs":[], "annots": [[30,36]]}]}

Note that there is an annotation of type PERSON that extends from character position 9 to 19 (i.e. the text
span covering "John Smith"). There is also a set of annotations provided here that denotes the boundaries
for each word/token, which have the type "lex".

By default if XML/SGML elements appear in the signal they will be treated simply as text. This means that
the signal does not need to be well-formed in anyway. This obviates the need to escape ‘<‘characters, for
example. Also, as XML/SGML elements are treated as part of the text and are not ignored, they may be
used as contextual cues which could be important with semi-structured data, for example.

 2.2.1 Tokenization and Sequence Detection and Region Processing

By default, the MAT-JSON processing mode will carry out its own tokenization and sequence delineation
(based on identifying sentence boundaries). jCarafe can accept pre-existing tokens that appear in the MAT-
JSON document object as “lex” annotations. The --no-pre-proc flag can be used for prevent jCarafe
from performing its own tokenization and to instead accept the provided “lex” annotations as the document
tokens.

MAT-JSON processing utilizes the concept of region annotations to process only specific portions of the
provided document signal. These annotations serve to represent document “zones” and/or to delineate
sequences within a document. For example, if preprocessing was done that identified tokens and sentences
separate region annotations could be provided that mark each sentence. In the case where pre-processing is
handled within jCarafe, region annotations might mark entire document zones that should be processed.

When the –-no-pre-proc flag is present, each region will be processed as a single sequence and any
“lex” annotations present in the region will denote the elements of a sequence. If the –no-pre-proc flag is
NOT present, then the standard build-in tokenization and sequence boundary detection routines will be
applied, separately, to each identified region. So, multiple sequences may arise from a single region
annotation depending on how many sentence boundaries are identified via the built-in pre-processing
routines.

An example region annotation is shown below. This annotation covers the entire span of the single sentence
in the ongoing example. If the document contained multiple sentences, there would be separate region
annotations for each sentence.

{"type":"zone","attrs":["region_type"], "annots": [[0,37,"body"]]}

There can be multiple types of regions within a document. Regions must NOT OVERLAP (either partial
overlap or embedding). To specify which regions to process, the –-region flag is used at the command-
line. See below.

 2.3 Basic Input Format

A final format that jCarafe accepts is a low-level, generic, representation for arbitrary sequence classification
problems. This format is non-text specific. Its purpose is to provide a means to provide outside application-
specific features directly to the CRF learning framework within jCarafe. This can be useful for problems in
computer vision, or other language problems that don’t operate at the “token-level” (e.g. sequences of
sentences) or are otherwise not amenable to jCarafe’s standard input representations.

The format is line based, so that each element in a sequence is represented as a single line in a file with the
format:

<sequence label> <feature1> <feature2> ……… <featureN>

The features and sequence label are tab-delineated. Each <feature_i> has the form:

<string>:<value>

The :<value> portion is optional. The <string> is an arbitrary alphanumeric string (containing no white-
spaces and no ‘:’ character) that serves to represent (or name) a feature. Features have a default value of
1.0 but the value can be changed by including a <value> for the feature. Below is a short example:

playSoccer windy sunny temperature:85.0
notPlaySoccer veryWindy rainy temperature:35.0

There are two elements in this sequence, the first labeled playSoccer, the second notPlaySoccer. Each has
three features. The “temperature” feature is non-binary and the scalar values of 85.0 and 35.0 are
provided.1

1 Note that in practice, real-valued features should be unit normalized to prevent numerical problems.

Sequences are delineated within a single file using blank lines (or lines that contain only the string “++”).
Sequences can be denoted also by placing each sequence in its own, separate file in which case no blank
line (or “++” line) is required.

Important: In order to use “Basic mode” the feature specification below should be used.
See Section 4 for additional details on feature specifications.

N as nodeFn;

E as edgeFn;

Wa as weightedAttrs;

 3 Getting Started

This chapter describes how to use the jCarafe command-line interface to train a model, provided a corpus
containing a well-defined set of annotations. Let's start by taking a look at the options provided to the jCarafe
command-line application which can be invoked as follows:

> java –jar jcarafe-core-XXX.jar --help

This provides the full list of options for using the main jCarafe application, including both training and
decoding/tagging modes. Each of these options is explained in further detail below.

 3.1 A Simple Example

Let's start with a very simple use-case of training a jCarafe model on a short, single file that contains three
different types of annotations: PERSON, LOCATION and ORGANIZATION. This file is shown below.

Agreement on these points is a long way from a specific program, and

nobody expects <LOCATION>the U.S.</LOCATION> to rush toward radical

restructuring of the health-care system.

But there are signs that labor-management cooperation could change the

politics of health-care legislation and the economics of medicine.

"I can't remember a time when virtually everyone can agree on what the

problem is," says Mr. <PERSON>Seidman</PERSON>, who heads

<ORGANIZATION>the AFL-CIO</ORGANIZATION>'s department dealing with health

matters.

Because the <PERSON>Bush</PERSON> administration isn't taking the

initiative on health issues, business executives are dealing with

congressional Democrats who champion health-care revision.

"Business across the country is spending more time addressing this issue,"

says Sen. <PERSON>Edward Kennedy</PERSON> (D.,<LOCATION>Mass.</LOCATION>).

 3.1.1 Training

We can train a model here by using the "inline" input mode. Either cut and paste the example file above into
the relative file examples/examplefile1.txt or copy the examples/ directory and/or files here to the directory
containing the jCarafe .jar file.

java -jar jcarafe-core-XXX.jar –-mode inline --train --input-file "examples/examplefile1.txt" --

model ./model1 --tag PERSON --tag ORGANIZATION --tag LOCATION --fspec default.fspec

The –-mode option with inline indicates that inline i/o processing should be used, the –-train option
indicates we are estimating a model rather than applying it to new data, --input-file argument specifies
the file path (relative or absolute) of the input, the --model argument specifies the path for the model file
that will be created as a result of training. The --tag argument flags indicate which XML/SGML element
names should be interpreted as annotations. Finally, the --fspec flag indicates which features should be
extracted from the input based on the feature specifications found in the specified file. Feature specifications
are discussed in further detail in Customizing jCarafe's Features.

 3.1.2 Decoding

With the resulting model, we can apply the decoder to a raw text file as follows:

java -jar jcarafe-core-XXX.jar –-mode inline --input-file "examples/example1.raw" --model ./model1

--output-file "out1"

This will take the raw input file, which in this case is the same file as was used during training, and run the
decoder using the model file "model1" created by the training process. We could also invoke the decoder on
the same file by processing the entire examples/ directory, but using a filter to only select the appropriate un-
annotated file(s) for processing:

java -jar jcarafe-core-XXX.jar –-mode inline --input-dir ./examples/ --filter “.*raw” --model

./model1 --output-dir ./

--out-suffix .out

This will select all files that end with the three characters "raw" from the examples/ directory, process them,
and place the results in the current directly with the input file names appended by the extension .out.

 3.2 Overview of the Command Line Options

OPTION DESCRIPTION REQUIRE/WITHOUT
--batch-size Integer. Applicable only when using SGD training with

PSA. Specifies the number of sequences to be used for
each sample/update of the gradient.

REQUIRES
--train

--confidences Flag. Output “confidence scores” as posterior probabilities
as an attribute over identified sequences (JSON output
only)

WITHOUT
--train

--disk-cache String. File path to an empty directory (on local disk) that
will store feature vector sequences in files. A separate file
will be created for each sequence and placed in this
directory. Allows the learning procedure to avoid storing
all feature vector sequences in memory; useful for very
large datasets and/or training on machines with limited
main memory.

REQUIRES
--train

--mode String. Specifies the i/o mode for the application: inline,
json and basic are the three options.

--train Flag. Perform training, rather than decoding/tagging
which is the default.

--no-pre-proc Flag. Do NOT tokenize and sentence tag the input.
Assumes “lex” tags are present when using inline mode
and that “lex” annotations are provided in JSON mode.
Will ignore/skip-over elements not annotated with “lex”
annotations.

--input-dir A file path. Input directory for training or decoding. All
files within the directory will be assumed as input files
unless the --filter option is used.

--input-file A file path. A single input file.
--evaluate A file path. Indicates that the data provided at decoding

time should be used to evaluate the performance of the
provided model. The tagset needs to be provided for the
annotations present in the test data to be picked up.

REQUIRES
–-tag

 --tagset

--filter A regular expression. Files within the specified input
directory that match the expression are processed. E.g. -
-filter .*sgm' would select files that end with "sgm".

--hidden-learning-rate Floating point. Specified learning rate for parameters
serving as inputs to hidden nodes.

REQUIRES
–-train

--neural

--model A file path. A file that will contain a serialized object that
is the result of training. Used at runtime to specify the
model to use for decoding.

--lexicon-dir A directory path. Specifies a directory containing files
consisting of wordlists used to construct lexicon features.

--induced-feature-map A file path.
--keep-tokens Flag. Specifies that identified tokens should be retained in

output representation. In cases where the tagging task
involves adding attributes to “lex” tags (e.g. part-of-
speech tagging), the --keep-tokens in conjunction
with the --no-pre-proc flag has the effect of ignoring
any predicted attribute-value pairs when the attribute
corresponding to the tagging task is already present in the
input.

WITHOUT
–-train

--seq-boundary List of colon-separated strings. Specifies the set of tags
used to delimit sequences (typically sentence tags) when
using xml or json input-output modes.

--tagset A file path. A file containing a tagset specification
--max-iters An integer. Maximum number of training iterations. REQUIRES

–-train
--neural Flag. Use a “neural” CRF that contains one or more

hidden nodes (or “gates”) at each position in the
sequence.

REQUIRES
–-train
–-num-gates

--no-begin Flag. Do not introduce BEGIN states for each label

category.
REQUIRES
--train

--no-cache Flag. By default expanded feature vectors are cached
during training. Memory can be saved (at the cost of
increased cpu time) by adding this flag to prevent
caching.
(REQUIRES --train)

--num-gates Integer. Specifies the number of hidden gates/nodes to
use with a Neural CRF.

REQUIRES
–-train
--neural

--gaussian-prior A positive float. Specifies the variance of the Gaussian
prior over parameters. Lower variances tend to more
aggressively try to combat over-fitting. Default is 10.0.

--l1 Flag. Use L1 regularization with SGD or PSA-based
training

REQUIRES
–-train
--psa or --sgd

--l1-C Double. Specify the penalty factor for L1 regularization.
(Default is 0.1)

--p-alpha Float. Initial value for “alpha” during SGD training which
controls rate at which learning rates decay

REQUIRES
–-train

--sgd
--parallel Flag. When using standard training, use multiple CPUs if

available.
REQUIRES
--train

--psa Flag. Use stochastic gradient descent training using
Periodic Step-size Adapation(PSA). Much faster than
standard training and usually provides a better model in
fewer iterations than plain SGD training.

--fspec A file path. A file that specifies the feature functions to
use during training.

--nthreads An integer. Number of threads to use for feature
extraction during decoding. This can speed up decoding
times on machines with multiple cpus/cores. Note that
when pipelining decoders (using the –-pre-model

REQUIRES
--parallel

flag), each decoder will be provided the number of
threads specified here.

--num-gates Integer. Specifies the number of hidden nodes/gates to
use with a neural CRF.

REQUIRES
--train

--neural

--num-states Integer. Maximum number of states to use for a non-
factored model. (ADVANCED)

--output-file A file path. Only available for decoding, this option
specifies where the automatically annotated output file
should be written to.

WITHOUT
--train

--output-dir A directory path. Only available for decoding, this option
specifies a directory where output files should be written
to.

WITHOUT
--train

--out-suffix A string. A string (usually an extension) that will be
appended to the input file names to construct
corresponding output file names.

WITHOUT
--train

--period-size Integer. The number of batches to consider for each
learning rate update using PSA.

REQUIRES
--train

--psa

--pre-model A file path. Specifies models to be applied as a pre-
process to the current training or decoding run. Facilitates
basic pipelining of decoders (see details below)

--prior-adjust A float. This parameter is used at decoding time to adjust
the weight for the parameter associated with the class
label bias that corresponds to “OTHER” to trade off
precision and recall.

WITHOUT
--train

--region String. A specification of a single zone type following the
syntax used for specifying tag/annotation types. Only
applicable in JSON mode.

--seed Integer. Integer seed to use for random number
generation when performing stochastic gradient descent-
based training. The instances are randomly shuffled prior
to training; setting a seed value here ensures the same
random ordering between separate runs

REQUIRES
--train

--semi-crf Flag. Use a semi-Markov CRF rather than a standard
first-order CRF. Requires different types of features (see
below for full details, this is an experimental feature)

REQUIRES
--train

--sgd Flag. Use stochastic gradient descent learning (without
PSA updates to learning rates). Not generally
recommended since PSA training usually works better.

REQUIRES
--train

--streaming Flag. This flag alters the processing during decoding so
that very large files are processed incrementally which
can save memory and improve processing times. Only
applicable in inline processing mode.

WITHOUT
--train

--tag A string. A specification for a single tag type. Multiple --
tag options can be provided, allowing for an entire tagset
to be specified on the command line.

--tokenizer-patterns A file path. Indicates a file with tokenizer Split and Merge
patterns for augmenting the built-in default tokenizer. See
Section 7.

--word-properties A file path. Indicates a file that contains word properties
that can be utilized as additional features.

--word-scores A file path. A file that contains pairs individual tokens with
arbitrary scores (real-values). The file format should
include on each line a single term followed by a single
space and a floating point value. If a token in the dataset
matches a token in this file a single feature is introduced
with the term weight as its value.

REQUIRES
--train

 3.3 Detailed Description of Command Line Options

This section outlines some of the command-line arguments described above in more detail. In many cases,
the default behavior of jCarafe obtained by ignoring these arguments is sufficient. However, in some cases,
more advanced use is warranted and adjusting some of these settings can notably improve performance
(accuracy and/or throughput).

 3.3.1 Lexicon Directory (--lexicon-dir)

In certain cases, especially when training data is limited, a lexicon can introduce features that greatly improve
performance. jCarafe provides a simple, standard method for easily introducing lexicon features. The
argument to the --lexicon-dir option is a path to a directory that contains a set of files. Each file within
the directory should be a word list that consists of one word on each line. The lexical features introduced,
assuming the lexFn or downLexFn feature specifications have been added (see Table 2 below), will have
names associated with the file names found in the specified lexicon directory. That is, if a word in the text is
present in a word list, a feature instance associated with the name of that word list is introduced.

 3.3.2 Tagset Specification (--tagset or --tag)

A tagset defines what tags, or annotations, the learner should pay attention to (i.e., try to learn) when trained
on a specified corpus. An individual tag specification is simply a string that matches a tag element name or
(e.g. PERSON to match an annotation such as <PERSON>John Smith</PERSON>), if the tag/annotation
type is described with both a tag element and a single attribute value pair has the following form:
TAG:ATT=VAL

So, for example, ENAMEX:TYPE=PERSON would identify the following annotation as a tag type to be
learned: <ENAMEX TYPE="PERSON">John Smith</ENAMEX> Note that the tag specification is case
sensitive and must match the strings found in the tags/annotations in the dataset exactly.

One further item to note is that the VAL or a tag specification using an attribute value pair may be a wild card
so that all values of a particular attribute that have the correct tag element name will get picked up as
annotations of a distinct type. So, for example, ENAMEX:TYPE=* would pick up as distinct annotation types
<ENAMEX TYPE=”PERSON”> and <ENAMEX TYPE=”ORGANIZATION”>. Within a tagset file, each tag
specification should be on a separate line.

Warning: Ensure that the tagset specification file uses the appropriate line-ending
encoding for the platform you are running on – i.e. ‘\r\n’ on Windows and ‘\n’ on all
other platforms.

 3.3.3 Begin, inside, outside encoding (--begin)

The standard way to encode phrase identification tasks as sequence labeling tasks is to introduce three
different types of states/labels. (B)egin states denote the beginning (i.e. first word/token) of a phrase of
interest; (I)nside states denote a token within a phrase of interest that is not the first word of that phrase; and
(O)utside tokens denote the tokens not part of any phrase of interest. An example of en encoding for the
annotated text snippet shown earlier is below:

The CEO , John Smith , left for Boston
O O O B_P P O O O B_L

By default, a BIO encoding will be used. If the --no-begin flag is present, however, begin states will not
be generated and the two separate states B_X and I_X (for beginning and inside of a phrase of type X,
respectively) will be collapsed to a single state, X. This would be a preferred encoding, for example, if two
phrases of the same type never occur immediately next to each other in a particular dataset.

 3.3.4 Periodic Step-size Adaptation (--psa)

The default training method in jCarafe is based around trying to maximize the conditional log-likelihood (CLL)
of the data. Computing the CLL and its gradient (required for maximizing the CLL) can be expensive,
however. It requires computing the model expected value of each feature over the entire training set.
Hundreds of iterations may be required for the model to converge and each such iteration may require hours
of computation for very large datasets.

An alternative approach to parameter estimation is to use stochastic gradient descent (SGD) methods. Rather
than computing the CLL and its exact gradient, SGD methods take a small sample of the training data at a
time and compute the gradient for just that small sample. The parameters are then updated based on the
"local gradient" according to a learning rate. The learning rate is given a momentum such that it decays over
time and the updates performed on the parameters are of smaller and smaller magnitudes.

jCarafe includes a variation of SGD learning called Periodic Step-size Adaptation (PSA) that has proven to
work well in practice. PSA works by separately adjusts the learning rates for individual parameters. Identifying
the optimal momentum value with SGD and initial learning rate can be tricky and carried out through simple
trial-and-error. Suboptimal momentum values or initial learning rates can mean that it takes much longer for
SGD to converge to optimal parameters, in the learning sense, or that the optimal parameters are never
reached (due to a learning rate that decays too rapidly).

A key insight towards overcoming this problem with SGD is the fact that some of the parameters may
converge more quickly than others. Accordingly, it would be preferable to update the learning rates for each
parameter separately, rather than having a single learning rate for the entire set of parameters. The approach
outlined in PSA takes exactly this approach and separately fine-tunes the learning rates for each parameter
based on the recent history of adjustment for that parameter.

Stochastic Gradient Descent training using PSA is enabled with the --psa flag. Note that there is not
automatic convergence test when using PSA. The user should set the number of iterations to a reasonable
value. While the default value of 10 iterations is usually sufficient, often it is possible to train a quality model
with 5-7 iterations, especially with large datasets. This value can be set with the –-max-iters flag.

 3.3.5 L1 Regularization (--l1 and --l1-C)

Regularization is a means to prevent models from overfitting by penalizing the learning objective function in a
way that prevents parameter values from being adjusted in a way that fits the training data too closely. The
standard regularizer for log-linear models like CRFs and maximum entropy models is an L2 regularizer such
as the Gaussian prior already described. This assigns a penalty term based on the square of each parameter
value. An L1 regularizer, on the other hand assigns a penalty term based on the absolute value of each
parameter. L1 regularizers are somewhat harder to work with since the absolute value function is non-
differentiable at zero. They have the benefit, however, of learning "sparse models" - that is, many parameters
in the resulting learned model will have a value of zero. Such parameters can be removed entirely from the
model. Such sparse models provide for more efficient decoders.

L1 regularization currently can be used with both standard stochastic gradient descent learning and PSA using
the --l1 flag. It is not available for batch training using the conditional log-likelihood objective. The penalty
factor associated with the L1 regularizer, C, can be adjusted using the --l1-C option (e.g. --l1-C 0.8

would set the value to 0.8). Its default value is 0.1. The optimal value must be manually tuned for each
specific data set (perhaps using cross validation).

 3.3.6 Pipelining Decoders (--pre-model)

Frequently, information extraction components are “pipelined”. A common pipeline might involve the following
sequence of processing steps: 1) tokenization, 2) sentence identification, 3) part-of-speech tagging, 4)
shallow parsing (i.e. chunking) and 5) Named Entity extraction. Developing pipelines of different components
is a complex task, in general, and a number of architectures and frameworks have been proposed to handle
this, including GATE and UIMA. This problem is beyond the scope of what jCarafe aims to offer, however
there are certain “local pipelines” that occur frequently in practice such as part-of-speech tagging followed by
Named Entity extraction, for example where the idea is to use the output of the part-of-speech tagging
process to help improve the Named Entity extraction. jCarafe provides basic support to pipeline multiple
processing stages, assuming each of those stages consists of a jCarafe decoder as specified by a jCarafe
model file.

Note first that pipelining can be achieved in a general way with jCarafe by running up-stream components,
perhaps not even jCarafe components, and encoding the output of those components as attributes on each
token (i.e. “lex”) annotation/tag. For example, one could run a Brill-rule-based part-of-speech tagger and
produce output that looks like:

<lex pos=”DT”>The</lex> <lex pos=”NN”>man</lex> <lex pos=”VBD”>ran</lex>

This could then be fed into a jCarafe-based Named Entity extraction component that uses the right types of
feature functions (see below) to add features based on the identified parts-of-speech. The primary goal of
jCarafe’s pipelining mechanism is to simplify this process and obviate the need to create intermediate file
representations containing the outputs from previous processing stages.

The –-pre-model tag facilitates pipelining in a simple way. Each decoder (i.e. model file) that should be
run as a pre-process is passed in via a –-pre-model tag. Then, assuming the right feature functions are
included in the feature specification(s) for the downstream model(s), the outputs from earlier stages are
provided as features to downstream stages. It is possible to provide more than one pre-process to run using

multiple –-pre-model specifications. The order in which the pre-processing steps are run is the same as
the order they appear on the command line.

 3.3.6.1 Pipelining Example

Let’s walk through an example of how the pipelining mechanism works. Let’s assume we’d like to run a
pipeline that consists of: part-of-speech tagging => shallow parsing => named entity extraction. The first
step would involve training the part-of-speech tagger. We’d like the shallow parser to make use of the part-
of-speech taggers output. We would train the shallow parsing using a command such as:

java –jar jcarafe-core-XXX.jar –-mode inline –-train –-input-dir

./shallow.input –-fspec shallowFspecWithPreProcessing –-pre-model ./part-

of-speech.MODEL –-model shallow.MODEL

This would run the part-of-speech tagger specified via the part-of-speech.MODEL model file up front
and then train the shallow parser using features produced from the output of the part-of-speech process. For
this to work, the shallowFspecWithPreProcessing spec file should contain the “allTagFn” or the
“attributeFn” feature specification in order to pick up the appropriate features from the part-of-speech tagger.

Now, in order to train the named entity extractor which should use both the outputs of the part-of-speech
tagger and the shallow parser, we would invoke a training command such as:

java –jar jcarafe-core-XXX.jar –-mode inline –-train –-input-dir

./ne.input –-fspec namedEntityWithPreProcessing –-pre-model ./part-of-

speech.MODEL –-pre-model ./shallow.MODEL –-model namedEntity.MODEL

In order to apply our named entity model that requires part-of-speech tagging and shallow parsing as pre-
processing steps, we need to provide this series of models at decoding time as well:

java –jar jcarafe-core-XXX.jar –-mode inline –-input-dir ./ne.toProcess –

-pre-model ./part-of-speech.MODEL –-pre-model ./shallow.MODEL –-model

namedEntity.MODEL –-output-dir ./ne.Processed

Note that while the preprocessing stages are carried out in series, there is no requirement that each be
dependent on any of the previous processing stages. It would be possible, for example, to include a
processing pipeline that consists of two separate part-of-speech taggers (that hopefully have somewhat

uncorrelated errors) neither of which is dependent on the other but both of which are used by a downstream
component to produce hopefully useful features.

Finally, note that this pipelining framework does not scale particularly well in that all the processing
components are part of the same memory image and the processing is in no way distributed.

 3.3.7 Semi-Markov CRFs (--semi-crf)

Semi-Markov CRFs are a strictly more powerful model than a first-order sequential CRF in which sequences
are jointly segmented and labeled. These models consider all possible segmentations for a sequence for
segments up to some specified length, k, and the label/classify each of these segments. Crucially, label
dependencies between adjacent segments are captured. This contrasts with a first-order CRF that captures
label dependencies just between adjacent sequence elements. Semi-Markov CRFs (or simply Semi-CRFs)
require different types of features than standard first-order sequential CRFs. Section 4.4 below describes
some of the feature specifications available for Semi-CRFs. Semi-CRFs are enabled by using the Semi-CRF
flag, --semi-crf. Note that Semi-CRF training is not fully supported in that the planned set of basic
feature specifications is not yet complete. Further, only standard batch conditional log-likelihood training is
supported.

 3.3.8 Multi-threaded Decoding (--nthreads)

jCarafe offers support to speed up the process of applying a trained model to new data (i.e. decoding) by
carrying out the cpu-intensive portions of this task, feature extraction and Viterbi decoding, with multiple
threads. In the current implementation, there is a fair amount of overhead associated with this and speedups
are typically only achieved if 3 or more cpus/cores are available. Despite the extra overhead, 5-fold speed-
ups or more are possible on machines with 10 or more cpus. The --nthreads flag takes an integer that
indicates the number of threads that will be spawned to carry out decoding, e.g. –-nthreads 10 specifies
that 10 threads should be used. Note that the number of threads may exceed the number of available
cpus/cores.

 3.3.9 Parallel Training Options (--parallel and --nthreads)

It is possible to use multiple threads during both standard batch training as well as stochastic gradient descent
training using PSA (see the –-psa option). The –-parallel flag indicates that multiple threads should
be used. As with decoding, by default 4n/5 threads are created where n is the number of detected cpus.
The –-nthreads option can be used to explicitly set the number of threads.

 3.3.10 Word Properties (--word-properties)

The --word-properties flag can be used to denote a file that contains a set of properties for
words/observations. This is similar to using a lexicon. However, instead of a directory of files, a single file is
provided where each line in the file denotes an entry, and each entry has the following format:

<word> <prop1> <prop2> …. <propN>

These properties can then be picked up as features by including the wdPropFn feature extractor (see
below). This way of encoding word-specific features can be more appropriate than using a set of lexicons
(with the –-lexicon-dir option) when there are potentially many properties associated with each word.
One particularly useful type of word-property feature is cluster-membership, which is discussed in Section
8.2.

 3.3.11 Neural CRF (--neural and --num-gates)

CRFs provide a flexible framework for working with large numbers of highly non-independent features.
Achieving high accuracies, however, often requires careful feature engineering. This is made simple with
jCarafe, but still requires a fair bit of time and experimentation. A recent extension for CRFs has been
proposed that introduces a “hidden layer” of gates between the observations and the states/label variables.
This hidden layer can discover non-linear properties of the input that help with the target sequence labeling
problem. The –-num-gates option indicates how many such gates should be introduced at each position in
the sequence. Only features that have been designated as “NEURAL” features will be connected to these
hidden nodes. Non-neural features will be connected to the “output nodes” directly. See the discussion of
neural features in the Feature Specifications section below.

 4 Feature Specifications

This section covers jCarafe's framework for declaratively specifying the types of features to include in the
model for a specific phrase extraction task. The features are the heart and soul of any extraction application.
Careful attention to the features used in a model is frequently the determining factor in arriving at high-
accuracy extraction systems. Furthermore, while jCarafe can comfortably accommodate models with millions
of features, the overall throughput of the system is adversely affected by more features than necessary.
Additionally, the model may well be more likely to over-fit with large numbers of features, providing degraded
performance especially when it's applied to data that "looks different" (e.g. is of a different domain or genre).

In the future, jCarafe will have functionality aimed at automatically discovering or inducing feature
specifications automatically from training data. Until then, however, specifying features must be done manually
and is often driven by linguistic intuition and/or knowledge of the task and domain. A solid experimental
framework (such as provided in the MITRE Annotation Toolkit) is recommended for iteratively developing
feature specifications by improving on results using a held out development set and/or cross validation.

A feature specification can be thought of as a template for creating features of a certain type. To understand
feature specifications, it helps to understand a little about the feature extraction process within jCarafe. For
each sequence in the data set, at each position within the sequence (i.e. for each word) each feature
specification is applied (or executed) at that position and results in a set of specific feature instances. This is
best explained by a simple example. Consider the feature specification:

simple_word_function as wdFn;

The part that says simple_word_function is simply the name of this specification and can be an
arbitrary string. The keyword 'as' separates the name from the specification body. The specification body in
this case is the string wdFn which is a built-in, atomic extraction function. The wdFn function simply identifies
the word at the current position and returns the word itself (unmodified) as a feature instance. In this way this
simple specification will introduce many different feature instances, on the order of the size of the vocabulary
of the training set.

 4.1 Built-in Feature Functions

jCarafe comes with a set of built-in feature extraction functions that serve as building blocks to create more
complicated feature specifications. These functions are detailed below:

Feature Function Description
wdFn Extracts the word at the current position and returns it as a feature
caselessWdFn Extracts the word at the current position and returns the result of

downcasing it as a feature
wdNormFn Extracts the word at the current position and introduces it as a feature

UNLESS the word is a number expression, in which case a single feature
denoting it as a number is returned instead.

regexpFn(name,regexp) Takes two arguments. The first is a string that will serve as a name for this
feature. The second is a string interpreted as a regular expression. If the
regular expression accepts the token at the current position, the first
argument name is returned as a feature

prefixFn(integer) Takes an integer argument. Returns all prefixes from length 1 to the
specified integer as features.

suffixFn(integer) Takes an integer argument. Returns all suffixes from length 1 to the
specified integer as features.

antiPrefixFn(integer) Takes the complement of prefix of length ‘integer’ as a feature – i.e. strips
off the first ‘integer’ characters and returns the rest as a feature.

antiSuffixFn(integer) Takes the complement of the suffix of length ‘integer’ as a feature – i.e.
strips off the last ‘integer’ characters from the string and returns the rest
as a feature.

prefNGrams(int1,int2) Adds all character n-grams of size ‘int1’ starting at the beginning of the
string and ending at position ‘int1’+’int2’ or the end of the string

sufNGrams(int1,int2) Adds all character n-grams of size ‘int1’ starting at LENGTH-‘int2’ until
the end of the string.

lexFn Checks whether the current word appears in a specified lexicon. If so, the
names of the lexical categories are returned as features.

wdLen Adds a single feature “wdLen” with a value equal to the length of the

current word in characters.
wdPropFn Checks whether the current word has any associated properties. If so, the

names of the properties associated with the word are returned as features.
wdPropPrefixFn(integer) Takes an integer argument. Returns the character prefix of the word

property string value having length “integer”. This is used primarily with
word properties derived from the Brown Clustering algorithm which
associates a bit string with each term corresponding to the branch in the
derived (binary branching) dendrogram.

downLexFn Downcases the current word and checks whether it appears in a specified
lexicon. If so, the name of the lexical category is returned as a feature.
Assumes, of course, that the lexicon provided has been downcased.

downWdPropFn Downcases the current word and checks whether the current word has any
associated properties. If so, the names of the properties associated with
the word are returned as features.

attributeFn(att) Adds the feature “att=<val>” where ‘att’ is an attribute of the current lex
tag and <val> is the value of that attribute. E.g. attributeFn(pos) would
add the feature “pos=DT” for the lex tag (i.e. annotation):
<lex pos=’DT’>..</lex> Note that in the feature spec file the
attribute should NOT be surrounded with quotes. Whatever appears within
the parentheses is considered part of the attribute name itself.

allTagFn Extracts all attribute-value pairs present within lex tags/annotations as
features.

sentPos Introduces a single feature with the value 1/d where ‘d’ is the position of
the current word in the sequence. Useful for tasks where there is a bias
for certain labels to appear towards the beginning of a sequence.

weightedAttrs This spec is used only in BASIC mode. It is required in order for user-
provided features to be added to the underlying feature vector sequences.

 4.2 Transition vs State Features

Features may correlate properties of the observed data with either individual states or state-pair transitions.
By default all feature specifications (except the edgeFn feature spec) will create individual state features. To

indicate that a feature should correlate with transitions the feature spec should end with the word
TRANSITION in all caps and preceded by a space. Note that including transition features will often increase
the number of features significantly since there are many more possible transition features than state features.
Below is an example of two feature specs involving wdFn features, introducing both individual state and state
pair (i.e. transition) features.

wdsWithStates as wdFn;

wdsWithTransitions as wdFn TRANSITION;

 4.3 Neural Features

Features may also be designated as “neural” features when one or more hidden nodes/gates are used along
with the --neural option flag. This is done by adding the word NEURAL to the end of a feature
specification:

wdsAsNeural as wdFn NEURAL;

This specification will add all the features produced by the wdFn feature extractor as inputs to all the hidden
nodes (the number of which is specified with the –num-gates option) as well as standard input features to the
CRF. A full explanation of how these features work is outside the scope of this document at this time. A key
point to mention is that adding many neural features will vastly increase the number of model parameters and
will tend to result in over-fitting (the model can also be more difficult to train/estimate). As such, neural
features are more appropriate to add for smaller numbers of input features. For example, instead of adding
neural features for all the word features (produced by wdFn) it might make sense to add neural features for
input features based on lexicon membership or based on part-of-speech attributes. As there are typically a
smaller number of lexicon membership features (one feature type for each word-list) and part-of-speech
features (number of part-of-speech tags), the number of parameters will not increase so much.

Note that the number of parameters will increase geometrically with the number of input features and number
of gates.

As mentioned, this is a highly experimental feature and it is not clear yet whether these types of models are
helpful for sequence labeling problems of the kind one finds when working with text.

 4.4 Higher-order Feature Specifications

The atomic feature functions just detailed provide low-level building blocks for more complicated features that
place these functions in context. These higher-order functions (or operators) take one or more feature
specification bodies (either atomic feature functions or more complicated expressions) as arguments.

Let's start with a simple example that introduces how we can add a feature specification that constructs
features regarding the word that appears immediately before and immediately after the word at the current
position. This would be done as follows:

context_unigrams as wdFn over (-1,1);

Again, the first piece is just a name for the specification. The specification body itself says that the wdFn
function should be applied to the previous position, -1 and the subsequent position, 1. The right argument to
the higher-order function over can be either a list of integer offsets (relative to the current position) or a range
of positions specified with the syntax (X to Y). So, for example, the following specification would capture
features for the three positions to the right of the current word:

unigrams_to_the_right as wdFn over (1 to 3);

The other important higher-order function is the ngram operator. This function takes the same arguments as
"over", but instead of introducing a set of features, one for each element in the specified range, the n-gram
function concatenates words at the relative offsets into a single feature instance. So, the following
specification would construct trigrams from the three words immediately to the right of the current word:

trigram_to_the_right as wdFn ngram (1 to 3);

A full description of the different higher-order feature functions can be found below:

Function Pattern Description
Atomic_function over offsets An atomic feature function is applied to all relative positions

within the specified range or set of offsets. The features
returned, for each offset value, are appended with the offset
value and added as feature instances.

Atomic_function ngram offsets An atomic function is applied to all relative positions in offsets
and all features extracted from all relative positions are conjoined

into a single feature together with the conjunction of offsets. E.g.
wdFn ngram (1,2) would return the single feature instance
"said_hello(1,2)" if applied at the position of the word "Smith"
in the passage "John Smith said hello".

Spec_body cross Spec_body This higher-order function takes the feature instances computed
from the first specification body, F1,...,Fn and the feature
instances computed from the second specification body G1,...Gn
and computes the cross product of feature instances, G1F1,
G1F2, ... , G1Fn, G2F1,..., G2Fn,..GnF1,..,GnFn This allows for
conjunctions of features to easily be created over existing feature
specifications.

 4.5 Semi-CRF Feature Specifications
Function Pattern Description
nodeSemiFn Bias feature for individual segment
nodeEdgeFn Bias feature for label pair of current segment and previous
phraseFn The entire current segment (n-gram) is added as a feature
phraseWds Adds a single feature for each term appearing in the current

segment. [Efficiency Note: this feature is not implemented by
caching/tying word features across overlapping sub-segments]

Note that many of the

 5 jCarafe API

The majority of jCarafe is written in Scala (www.scala-lang.org) , with some lower-level routines and libraries
written in Java. It may be desirable, however, to treat jCarafe simply as a Java library for use in larger
applications and so a Java API has been provided. Currently, the API provides a mechanism to instantiate
and run decoders (i.e. taggers) with a provided model, but doesn’t facilitate building models (i.e. training).
The API is in its early stages with additional functionality planned to more easily facilitate different
input/output formats as well as to specify certain parameters to the decoder.

http://www.scala-lang.org/

The jCarafe Java API works in a very simple fashion via a single class:
org.mitre.itc.jcarafe.jarafe.JarafeTagger. Currently, the API does not support training, so
models must be derived by running jCarafe via the command-line interface. A Jarafe instance needs to
specify an input/output mechanism along the lines of the inline, json options described earlier for batch
processing. Once properly initialized the Jarafe object provides a set of methods for processing a single string
as input (either inline or MAT-JSON). Full details on the Java API can be found in the javadocs. Here, we
provide a couple of Java examples using the API.

//import API

import org.mitre.itc.jcarafe.jarafe.JarafeTagger;

//set up the JarafeTagger object

JarafeTagger tagger = new org.mitre.itc.jcarafe.jarafe.JarafeTagger();

String modelFilePath = “C:/Documents ….”

tagger.initializeAsText(modelFilePath);

String result = tagger.processString(“Some string to process …”);

An alternative way to use the API is to pass in, as an array of strings, the command-line arguments that one
would use from the command line to use the decoder/model:

//import API

import org.mitre.itc.jcarafe.jarafe.JarafeTagger;

//set up the JarafeTagger object

JarafeTagger tagger = new org.mitre.itc.jcarafe.jarafe.JarafeTagger();

String modelFilePath = “C:/Documents ….”

String[] args = {“--model”, modelFilePath, “--mode”,”inline”,”--seq-

boundary”, “s”, “--nthreads”,”5”}

tagger.intialize(args);

String result = tagger.processString(“Some long string to process..”);

Note that the key difference with the second method is the ability to pass in arbitrary options to the decoder in
a concise (but not type-safe) manner. The API will be extended in the future to provide methods to directly
add decoder options.

 6 jCarafe as a Service using XML-RPC

The jCarafe Java API described above allows users to integrate jCarafe-based extraction capabilities into their
existing application(s). In this setting, a client sends a unit of text to be processed, a jCarafe server applies

one or more extraction routines to the data and returns a set of annotations over the data in one of the
primary representations discussed earlier: standoff annotations via JSON-MAT or inline annotations.

Using jCarafe-based services requires the jcarafe_services jar file that includes additional functionality beyond
the core jCarafe distribution.

Given a jCarafe model, an XML-RPC service can be started with the following command:

java -cp jcarafe_xmlrpc-0.9.8.4.min.jar \

org.mitre.itc.jcarafe_server.tagging.JarafeTaggerServer <port> <options>

The standard command line options appropriate for a jCarafe decoder can be passed in as the set of options,
<options>.

Client applications need to call the method "jarafe.processBase64String" with a single argument that is a
base 64 encoded string in the corresponding input/output format. So, for example, if the server is expecting
"json" format, a base64 encoded string containing "signal":"Text to process" should be provided. If the
server is in “inline” mode, the string "Text to process" would be provided, base64 encoded. Recall that
JSON-encoded strings must conform to the JSON standard and cannot, for example, include newlines or
other control characters. These must be properly escaped.

 7 Custom Tokenization Patterns
jCarafe includes a basic, built-in tokenizer tailored somewhat for processing English language text. This built-
in tokenizer is quite efficient, implemented as a lexer/scanner using JavaCC. The tokenizer includes various
patterns for clitics and common abbreviations (e.g. honorifics). Previous work has shown, and anecdotal
evidence suggests, that tokenization can play a key role in improving the results of phrase extraction systems.
In many cases, sub-optimal tokenization can be compensated for through the use of the right types of
character-level features. In other cases, however, identifying the right token boundaries is very important or
necessary to achieving good performance. This is most critical in cases where the tokenization boundaries do
not align with the phrase boundaries for the target extraction task. For example, on at least one dataset we
have worked with only the day and month portions of dates were to be tagged. This could prove problematic
when dates are of the format YYYYMMDD, such as: 2012<DATE>1231</DATE> . Most tokenizers, not
surprisingly, would fail to tokenize an 8-digit expression such as 20121231 into two separate tokens: “2012”
and “1231” – required in this case to properly identify dates.

As of jCarafe 0.9.8.4 a set of Split-Merge patterns can be provided to re-tokenize the default tokens
provided by the built-in tokenizer. An ordered set of Split patterns are first applied to the stream of tokens to
break them up into smaller tokens followed by an ordered set of Merge patterns that match sequences of
tokens and group them together into single tokens.

Both Split and Merge patterns are constructed from the following pattern literals:

 Regular expressions, denoted: R(<regular expression>)
 Exact sub-string matches, denoted “<string expression>”
 Matches against lexical sets, denoted SETNAME

In addition, Merge patterns include an additional literal:
 Repeated regular expression matches over input tokens, denoted Rep(<regular expression>)

 7.1 Split Patterns
Split patterns operate over individual tokens. There is no context-sensitivity; that is, whether and how a token
is split into smaller tokens is purely a function of the input token itself and cannot be influenced by
surrounding tokens. The use of Split patterns is best explained via example:

SPLIT: R([12][0-9][0-9][0-9]) R([01][0-9][0-3][0-9]);

Note that the pattern begins with an identifier indicating that it is a Split pattern type. Each pattern must end
with a semi-colon character. There are two regular expressions in the above pattern. The pattern greedily
attempts to match these patterns to every input token and if they both match each such token will be split up
into two new tokens accordingly. This pattern would split up 8-digit tokens of the form YYYYMMDD as
mentioned earlier. So, the token 20120101 would appear as two separate tokens 2012 and 0101. Below is
another example which introduces lexical sets.

ABBREV := “Dr”; “Mr”; “Adm”; “Gen”; “Col” =:

SPLIT: ABBREV “.”;

The names for lexical sets are user-defined. In this example, we’ve chosen the name ABBREV to indicate a
set of tokens that serve as honorific abbreviations. Each element in the lexical set should be contained within
double quotes; they are delineated with a semi-colon character ‘;’. The built-in tokenizer is aware of many
English honorifics and will include the trailing period as part of the token. For some applications, it may be

useful to detach such periods. The above Split pattern achieves this by first finding a prefix sub-string that
matches an entry in the lexical set ABBREV and then matching against the trailing period.
A restriction on the use of lexical set literals is that each must be followed by a string literal or a regular
expression literal. Efficiency is greatly improved with this restriction since otherwise a pattern such as
SPLIT: ABBREV ABBREV; would require searching (and possibly backtracking!) through all the entries in
the lexical set. The restriction here allows the pattern interpreter to search ahead to match a sub-string
corresponding to the literal following the lexical set literal and then quickly check if the preceding substring is
an entry in the lexical set. So for the example above, the pattern interpreter searches ahead to see if the last
character of the input token matches “.” and if so, checks whether the preceding sub-string is contained in the
lexical set denoted by ABBREV.

 7.2 Merge Patterns
Merge patterns operate over sequences of tokens. Each literal in a merge pattern matches against one or
more tokens. If a pattern fully matches a token sequence (i.e. all literals within the pattern match one or more
input tokens), then the resulting token sequence will be converted into a single token. Again, this is best
illustrated through examples:

MERGE: ABBREV “.”;

This Merge pattern performs the complementary operation to the earlier Split pattern. If “Col” occurs in the text
followed immediately by a “.” token, these will be merged into a single token “Col.”.
Merge patterns include all the literals used for Split patterns, but they always match against entire tokens. In
addition, Merge patterns also introduce the Rep(<regular expression>) pattern that matches a series
of tokens. For example, the literal Rep([0-9]+) would match a series of tokens where each token
consists of exactly one or more digits. As many tokens as possible would be matched. Below is a more
complicated example:

 MERGE: “http” Rep([\P{M}\p{M}*]+) “com”

This type of pattern matches groups of tokens that begin with “http” and end with “com”. The pattern literal
Rep([\P{M}\p{M}*]+) matches arbitrary Unicode tokens (using Java regular expression syntax). The
reason that this pattern matches the intended token sequences here is due to one-step look ahead. As the
Rep([\P{M}\p{M}*]+) pattern matches against tokens, the pattern interpreter always looks ahead to the
next token and if it matches the pattern literal after at Rep(<regular expression>) literal the pattern

as a whole matches. This look-ahead helps with efficiency and makes for more intuitive patterns and less
complicated regular expressions. For example, the above pattern could also be written without the final
“com” literal, but would require the regular expression pattern to match all tokens except “com”2. Such
‘negative’ regular expressions can be difficult to express.

 7.3 Pattern Interpreter Details
Both Split and Merge pattern sequences work by attempting moving the current position from left to right
through the token sequence and attempting applying each pattern to the prefix of the input token sequence
beginning at the current position. The patterns are applied in the order in which they appear in the
tokenization specification file. If a Split or Merge pattern matches the current prefix, the current prefix is
replaced with the result of the pattern (i.e. a single token is replaced with two or more tokens using a Split
pattern and a series of two or more tokens are removed and replaced with a single token in a Merge pattern).
The entire set of Split or Merge patterns is then reapplied to the current token sequence prefix. This allows
for repeated splitting and merging of (sub-)token sequences. For example, consider the following two
patterns:
SPLIT: R([A-z,0-9]+) “-” R([0-9]+);

SPLIT: “ID” R([0-9]+);

Let’s walk through how these patterns would be applied to the following sequence of tokens:
[His] [number] [is] [ID12345-4525] [.]

Recall that Split patterns are applied to individual tokens. For the first token [His], the interpreter will check
whether any of the Split patterns match. If no patterns match, as in this case, the interpreter continues on to
the next element in the sequence. Upon reaching [ID12345::4525], we can see that the first Split
pattern applies and will break this token up into the token sequence [ID12345] [::] [4525]. These
three elements constitute the new prefix of the token sequence. The interpreter will now attempt to apply the
Split rules to the new prefix [ID12345]. The first Split pattern does not match, but the second pattern does.
This pattern will break the token into [ID] [12345]. The resulting token stream would be:
[His] [number] [is] [ID] [12345] [-] [4525] [.]

As mentioned earlier, the Split patterns are applied to the entire token sequence followed by the Merge
patterns which are applied to the resulting token sequence. This allows merge patterns to reassemble tokens
split apart in the Split pattern phase.

2 Note that just removing the “com” string literal without changing the pattern would cause this pattern to match all the remaining
tokens in the input token stream!

 7.4 Tokenizer Pattern Language Grammar
Below is the formal grammar for defining tokenizer patterns in Extended Backus Normal Form:

topExprs = [lexicalCategories], {topExprs1, “;”}

lexicalCategories = { atomExpr, “:=”, {strString, “[;\n\r]+”}, “=:” }

topExprs1 = { (“SPLIT:” | “MERGE:”), topExpr }

topExpr = patExpr, topExpr | patExpr

patExpr = repReExpr | reExpr | tokExpr | atomExpr | strExpr

atomExpr = “[A-z]+”

repReExpr = “Rep(“, regex, “)”

regex = <any valid Java regex>

reExpr = “R(“, regex, “)”

strExpr = “\””, <arbitrary string with escaped double quotes>, “\””

 8 Additional Functionality

Besides the core functionality described in this guide, jCarafe provides other applications useful for processing
text data as well as additional stand-alone learning algorithms.

 8.1 Tokenizer

jCarafe's built-in tokenizer for English can be called as a separate application. The tokenizer will produce
reasonable output for any latin-based character sets. The tokenizer can be invoked on a single file as follows:

java -cp jcarafe-XXX.jar org.mitre.itc.jcarafe.tokenizer.FastTokenizer --

input-file <input file> --output-file <output file> [--json]

The resulting file will contain the original input file contents with lex tags wrapped around each identified
token.

If the --json flag is added, the input is assumed to be in MAT-JSON format. The elements of the JSON
document signal will be tokenized with standoff token annotations added with type lex; the resulting
serialized JSON document object will be written to the specified output file.

Custom tokenization can also be carried out by providing a file of tokenization patterns using the

--tokenizer-patterns argument flag.

 8.2 Term Clustering and Leveraging Clusters as Features
An implementation of the Brown Clustering algorithm is included as part of the “jcarafe-ext” package. This
program takes a single file or a directory of input files and groups words together into clusters based on their
contextual similarity. See Brown et al. (1990) for details.

The utility includes the following options:

OPTION DESCRIPTION
--input-file Path. Single input file
--input-dir Path. Input directory of files to process
--output-file Path. Single output file containing resulting clusters
--num-clusters Integer. Number of clusters
--text-input Flag. Do not parse and ignore SGML/XML tags.
--property-format Flag. Indicates that output should be rendered in a format

amenable to use as a jCarafe “word property” file.
--quiet Flag. Minimize program output
--verbose Flag. Include more detailed output

Below is a typical invocation:
java -cp jcarafe-ext-XXX.jar org.mitre.jcarafe.clustering.BrownClustering

–-input-dir ./input.directory/ --num-clusters 1000 –-output-file

output.clusters

 8.3 Maximum Entropy Classification

The maximum entropy classifier can be invoked in a manner similar to the standard invocations for using
jCarafe for phrase tagging described above. For training the invocation is:

java -cp jcarafe-core-XXX.jar org.mitre.jcarafe.maxent.ME --train --input-

file <input file> --model <model file> [--gaussian-prior <positive float>]

The result of this process is the learned model placed in model file. The model can be used on new data by
applying the decoder as follows:

java -cp jcarafe-core-XXX.jar org.mitre.itc.jcarafe.maxent.ME --input-file

<input file> --model <model file> --output-file <output file>

The output of this process sent to output file consists of a file where each line corresponds to the same line
number in the input file. Each line in the output file has a tab-separated list of label and probability pairs of
the form label:probability -- i.e., where the label and probability values are separated by a colon character.

 8.3.1 Data Formats

For both training and decoding, the following format is used. Each line in the file represents a single
training/test instance. The first element is a string denoting the label/category for that instance. The
remaining elements are features, which can be arbitrary strings, followed by an optional real-valued feature
value (the default is 1.0). Elements are separate with one or more single spaces. A comment can be
provided for each instance (useful for keeping track of where it came from) at the end of the line initiated with
a '#' character. Below is a simple example:

 playSoccer sunny windy windspeed:20.0 # this was on Sunday April 9

 notPlaySoccer rainy windy windspeed:30.0 # this was the next day

 playSoccer johnPlays numberOfPlayers:10.0 numberOfPlayersGreaterThan7

 ...

At test time, if labels are included, the performance of the classifier will be provided. If labels are not available
(because the data hasn't been labeled) some element must be still be included as a placeholder:

 UNK sunny windy windspeed:20.0 # this was on Sunday April 9

 UNK rainy windy windspeed:30.0 # this was the next day

 UNK johnPlays numberOfPlayers:10.0 numberOfPlayersGreaterThan7

 8.3.1.1 Training with Label Distributions
For some applications and datasets one may have non-trivial distributions over the labels for each
classification instance. For example, perhaps we have some noisy or imperfect information about whether the
person in question has played soccer or not on past days; that is, we know that soccer was played with some
probability. A slight generalization of the Maximum Entropy classifier accommodates this type of classification
problem; the input format is similar to standard classification tasks except that the entire probability distribution
over labels is provided, as follows:

playSoccer=0.8 notPlaySoccer=0.2 sunny windy windspeed:20.0

notPlaySoccer=0.9 playSoccer=0.1 rainy windy windspeed:30.0

playSoccer=0.75 notPlaySoccer=0.25 johnPlays numberOfPlayers:10.0

numberOfPlayersGreaterThan7

 ...
This format is “auto-detected” and so may be used without any adjustment to the arguments provided to the
invocation. In addition, the distribution provided is automatically unit normalized so that the values sum to 1.0;
values provided should be non-negative, however.

 8.4 Log-linear Ranking Model

For ranking problems, the format is slightly different. Each "event" within a "ranking instance" is on a
separate line having the form: handle prob. mass feature vector. Each group of instances making up the event
is separated by a line with 5 or more '-' characters in a sequence.

The handle is an arbitrary label that is ignored. The prob. mass is a float between 0 and 1 indicating the
"score" associated with that instance of the event. For example:

 lab1 0.9 feature1 feature2

 lab2 0.06 feature3 feature4

 lab3 0.04 feature4 feature5

 lab1 0.7 feature1 feature10

 lab2 0.2 feature3 feature5

 lab3 0.05 feature4 feature5

 lab3 0.05 feature3 feature6

The above includes 2 "events" where the first has 3 instances and the second has 4 instances. Any number
of instances may be included for each event. The total probability mass should sum to 1 for each event
(though these masses will be re-normalized to sum to 1 in any case).

